Magnetism
In physics, the magnetism (じせい British: magnetism) is the property that a material reacts to the magnetic field at the level that is smaller than an atom or an atom and is one of the properties to give gravitation and repulsive force to for other materials. I say the magnetism (soon).
Table of contents
Summary
As for the magnetism, a classification is accomplished variously. For example, ferromagnetism is well known in the magnetic classification, but the material with ferromagnetism can bring about a sustained magnetic field by oneself. In addition, the magnetic field is caused by the electric currents. By the way, every material comes under some kind of influences except for a difference of the degree by a magnetic field. If there is the material made come near in the magnetic field (paramagnetic), there is the material repelling the magnetic field (diamagnetic). Furthermore, there is the material having a magnetic field and complicated relations. Besides, I may show various magnetism by conditions such as the temperature to depend on the temperature (or pressure and neighboring magnetic fields) of a certain material in condition magnetic (or an aspect) even if it is one material. But the influence that a material receives in most cases by a magnetic field is small so as not to be able to detect it if I do not use the special device. Above all, the material which can ignore the influence of the magnetic field is called nonmagnetic (non-magnetic) material, and, for example, copper, aluminum, general gas, synthetic resin are included in this. For a nonmagnetic material, an artificial iron alloy such as the steel certain as a material (ferromagnetic material) indicating the magnetism that is strong so as to understand it easily when I use it including the special device is well known. In addition, a human being does not need to add a hand that the mineral such as magnetite (natural magnet) or the pyrrhotite is a ferromagnetic material and is apparent because the name has "磁" of "the magnet", and the magnet which can grasp that I have magnetic force is known to have possibilities to be generated naturally.
The magnetic force is basic power caused by the campaign for electric charge. A source and the behavior of the place to influence magnetic force are described by Maxwell equation (the law of ビオ Savart is reference). Thus, the magnetism appears anytime if a particle with an electric charge exercises. The magnetism occurs by the electronic exercise in the electric current, and is called electromagnetism; and electronic quantum mechanics-like orbit exercise produce it by a spin, and it is in a source of of the permanent magnet (do not perform orbit movement such as the planet where the electron goes round the sun, but "the effective electronic speed" exists).
History
That, according to Aristotle, it is Thales to have done a scientific discussion about the world's oldest magnetism (from B.C. 625 to 545); [1]. Doctor Susruta uses a magnet for an operation in ancient India at the same time [2].
With the description about the magnetism "to attract iron as for the magnet" to "ogre Valley child" of the fourth century in ancient China B.C. [3]. With the description, "a magnet attracts a needle" to "a Chinese book on philosophy" written from 20 through 100 in A.D. [4]. Chinese 科学者沈括 (1031–1095) describes a direction magnetic needle by "dream valley conversation by writing" in the eleventh century.
In 1187, Alexander ネッカム described a direction magnetic needle and the application to the voyage for the first time in Europe. "Magnetic letter" (Epistola de magnete) which ペトルス ペレグリヌス wrote in 1269 is the oldest article to exist that I wrote down about the property of the magnet. In 1282, astronomer, Al = Ashraf of the geographer describe a magnet and the property of the direction magnetic needle in physicists of Islam [5].
In 1600, William Gilbert publishes De Magnete, Magneticisque Corporibus, et de Magno Magnete Tellure (menstruation of the earth as a magnet and a magnetic body and the large magnet). I show various laboratory findings using terrella which modelled the earth in that. By such an experiment, as for him, earth in itself had magnetism and concluded it when geomagnetism thereby occurred, and a direction magnetic needle pointed to the north. In Europe, an opinion to be the island made of an opinion that it was the polestar to attract a direction magnetic needle (Polaris) and huge magnets in the North Pole was believed till then.
As for the electricity and the elucidation of magnetic relations, there is that the Hans Christian oersted that was a professor of the Copenhagen University discovered that a direction magnetic needle is affected by an electric current by an opening in 1819. Andre = Mali Ampere, curl Friedrich gauss, people such as Michael Faraday tested it and clarified electricity and magnetic relations more afterwards. James Clark Maxwell collects previous knowledge into Maxwell equations and will bring about the electromagnetism that compiled electricity and magnetism and optics in the field for one minute. In 1905, Einstein brought about the special theory of relativity from there [6].
The classic electromagnetism had to wait for quantum-mechanical establishment of the early 20th century to discuss the magnetic origin of the material in earnest although it was completed at the end of 19th century. This is because I cannot explain the magnetism of the material in the classic system that is macro for a theorem of Bohr = fan リューエン. After quantum-mechanical establishment, it was recognized that it was essence in the material magnetic origin that an electron and nuclear spin angular momentum to have were microscopic. Central Werner Heisenberg who played the part submitted a theory of the strong magnetic substance based on the quantum theory in the quantum-mechanical establishment in 1928 [7]. Including a theory of Heisenberg, the magnetic study of the material using the quantum mechanics began in earnest, but a debate continued for 30 years I was opposed to a theory of Heisenberg whom an electron located in the atomic nucleus neighborhood carried magnetism on, and Felix Bloch, Edmund ストーナー supported journey electron theory [8] that the electron which wandered about through the whole material carried magnetism on [9], and which theory shot the mark. Meanwhile, discovery, explanation of the new magnetic structure such as nail antiferromagnetism, weak ferromagnetism were carried out. The material that each place theory of the constipated station was effective was found, and, as for the localized electronic theory vs. journey electronic theoretical fight, it became clear that which theory shot the mark to some extent.
When it was 1949, a concept of the localization of the journey electron with the electronic correlation was brought by Neville motte [10], and building up the foundation of of the electronic localization in the Hubbard squash model was done using a concept of the motte in 1959 by Philip Anderson [11]. The frame which handled a journey electron and a localized electron integrally was in this way established. Motte and Anderson won Nobel Prize in Physics by this achievement in the same way with John station wagon ブレック which studied magnetism in 1977 (basics of electronic structure theoretical study pro-magnetic body and disorder an awarding reason:).
When it was the late 20th century, I showed a stronger desire to deep understanding than I corresponded to the property of material electronic spins to have, and elucidation of material magnetism order advanced from an association between monster system high-temperature superconductor and magnetic order cuprate, the magnetic industrial use, the development of the spintronics. I could operate magnetic structure in a material artificially, and the hard disk drive which recorded information was put to practical use by the ferromagnetic structure called the magnetic domain.
Magnetic source
Have close to angular momentum relation to magnetism, and is microscopic; with the Einstein ド = Haas effect indicating "a turn by the magnetization" and the Barnet effect indicating the reverse "magnetization by the turn" [12].
On the scale that is smaller than atom and it, these relations are expressed at magnetic moment and the ratio of the angular momentum namely gyromagnetic ratio.
There are two kinds of magnetic sources.
- A magnetic field is formed by an electric current or an electric charge to move (Maxwell equations)
- Many elementary particles have "inborn character" (or "a spin") that is not zero magnetic moment. I may have the magnetic moment that is not zero so that each particle has mass and an electric charge.
The physical cause that an object has magnetism toward is a magnetic dipole to produce to an atom unlike the case of the electric current. The magnetic dipole on the atom scale or the magnetic moment occurs because of two kinds of electronic exercise. The first is electronic railroad track motion turning around around an atomic nucleus. I can consider this to be the loop of the electric current and produce orbit magnetic moment in the axial direction of the atom. The source of the second much stronger magnetic moment is a quantum mechanics-like property called the spins. This called the spin magnetic moment (is not said that but an electron really rotates by the modern quantum-mechanical theory physically, and work on a track around an atomic nucleus). In addition, there is the magnetic moment in an atomic nucleus, but generally there is only strength of several thousand part of electronic it and hardly influences the magnetism of the material. However, a nuclear magnetic resonance (NMR) and the nuclear magnetic resonance imaging (MRI) use, for example, the nuclear magnetic moment.
The general magnetic moment of the atom becomes the grand total of individual electronic magnetic moment. I deny the magnetic moment suitable for the objection that the pair of some electrons has in both the orbit exercise and the spin magnetic moment each other that the magnetic dipole rallies each other and is going to lower energy of the original taste. Therefore, magnetic moment is completely usually denied with the atom which an electron shell and a subshell are completely filled with. It is only the atom which an electron shell is filled with partially to have magnetic moment, and the strength is non-fixed with an anti-electronic number.
Therefore the difference in electron configuration every various elements decides a property and strength of the magnetic moment of the atom and decides the magnetic characteristic difference of various materials again. In addition, the magnetic characteristic changes by the temperature (it becomes difficult at the high temperature that an electron continues unidirectionally exercising by the campaign for unintentional numerator all together). The magnetic behavior of some following forms is seen with various materials.
Various magnetic
Diamagnetic
There is the diamagnetism to every material and shows a tendency to repel the magnetic field. However, paramagnetism becomes dominant with the material with paramagnetic (tendency to strengthen an outside magnetic field) [13]. Therefore, the phenomenon of the diamagnetism is observed only with the material which only diamagnetism has though every material has diamagnetism. The electron makes a pair with the diamagnetic material by all means and the electronic spin magnetic moment is always offset and does not cause a macroscopic effect at all. In that case, electronic orbit movement causes the magnetization and can understand as follows classically.
The electron turning around around an atomic nucleus will catch the Lorentz force by the magnetic field in addition to the coulomb force between the atomic nucleus when I put a material in the magnetic field. By a direction of the electronic exercise, central force is strengthened, and an electron is drawn to an atomic nucleus and is separated adversely. Therefore, the electronic magnetic moment with magnetic field and orbit magnetic moment for reverse becomes strong, and the electronic magnetic moment to have the orbit magnetic moment of the direction same as a magnetic field is weakened (Lenz's law). As a result, magnetic moment for reverse occurs in the whole material with the magnetic field.
In addition, this sleeve notes is a kind of Hugh squirrel Thich, and it is necessary to take quantum mechanics for the true understanding.
The change of such an orbit happens with every material, but cannot observe the phenomenon of the diamagnetism because the electronic effect that does not make a pair is relatively big with paramagnetism and the ferromagnetic material.
Paramagnetic
The paramagnetic material has the electron which does not make a pair, and there is only one electron in atomic orbital or molecular orbital. As for two electrons sharing one orbit, genuine (spin) magnetic moment consists of Pauli exclusion principle of Pauli to reverse, and the magnetic field by the magnetic moment is offset. The direction of the magnetic moment is free by the electron which does not make a pair. When a magnetic field is applied by the outside, it tends to keep those magnetic moment to one of an applied magnetic field, and overall magnetism is thereby strengthened.
Ferromagnetic
The strong magnetic substance has the electron which is not a pair like paramagnetic substance, too. Therefore, when I was put in the magnetic field, those magnetic moment has a property to be unidirectionally prepared, but each magnetic moment tends to be going to be prepared each other to keep an energy state low at the same time. Therefore the electron in the material continues maintaining the same direction even if I remove a magnetic field and can become the permanent magnet.
The ferromagnetic material has the temperature called a Curie point or the Curie point each and loses ferromagnetism in the state more high temperature than it. Because an atom and molecules exercise by a high temperature in a disorderly manner, this is not to be able to keep the agreement of the direction necessary to show ferromagnetism.
The ferromagnetic material which is used for magnets includes nickel, iron, cobalt, gadolinium and those alloys.
Magnetic domain
Such as the permanent magnet small by the magnetic moment that individual atoms have with the ferromagnetic material an atom behave in a way. Therefore I have a convulsive fit like a magnet each other and stand in line and form the area where magnetic moment gathered. I call this a magnetic domain (magnetic domain). I can observe this minute magnetic domain when I use the magnetism power microscope.
When one magnetic domain grows too much big, it becomes unstable and is divided in two magnetic domains for reverse. Then it becomes like the right figure, and an adjacent magnetic domain will attract it more strongly.
A magnetic domain grows up like a left-hand figure and comes to gather in the direction of the magnetic field when I put strong magnetic substance in the magnetic field. Remove outside magnetic field; even if is, the state of the magnetic domain may not be restored. Therefore the ferromagnetic material is magnetized and becomes the permanent magnet.
十分強力に磁化されると、1つの磁区が支配的となって飽和磁化状態となる。ただし、磁化された強磁性物質を熱してキュリー温度を超えると、分子が揺り動かされて磁区を形成できなくなり、強磁性は失われる。
反強磁性
反強磁性は強磁性とは異なり、隣接する原子の真性磁気モーメントが互いに反対向き(反平行)になる傾向がある。原子が整列している場合、隣接する原子同士で磁気モーメントは常に反平行となり、反強磁性を示す。反強磁性体は全体として磁気モーメントが相殺されているため、磁場を発生しない。反強磁性は他の磁性に比較するとあまり見られず、主に非常に低い温度で観測される。温度を変化させると反強磁性体は反磁性およびフェリ磁性を示す。
一部の物質では隣接する電子が反平行となるが、それぞれの対はばらばらな向きを向いている。このような物質を「スピングラス」と呼ぶ。これはフラストレーションが生じている例である。
フェリ磁性
強磁性体と同様、フェリ磁性体も磁場のない状態で磁化された状態を保持する。しかし反強磁性体と同様、隣接する電子のスピンは反平行となっている。一見すると矛盾する特性を兼ね備えているのは、最適な幾何学的配置において一方向の磁気モーメントが逆方向の磁気モーメントより大きいためである。
天然に産する磁鉄鉱は元々は強磁性体だとみなされていたが、ルイ・ネールがフェリ磁性体であることを発見した。
超常磁性
強磁性体あるいはフェリ磁性体が十分小さいとき、ブラウン運動に左右される単一の磁気スピンのように振る舞う。磁場を印加した場合の反応は定性的には常磁性体と類似しているが、定量的にはもっと大きい。
その他の磁性
磁性・電気と特殊相対性
アインシュタインの特殊相対性理論の帰結として、電気と磁気は根本的に相互に関連していると理解されている。電気を伴わない磁気や磁気を伴わない電気は、ローレンツ力が速度に依存する点から特殊相対性理論と整合しない。しかし、電気と磁気を両方考慮する電磁気学の理論は特殊相対性理論に完全に整合している[6][14]。従って、ある観察者から見て完全に電気に見える現象は、別の観察者から見れば完全に磁気に見える可能性があり、電気と磁気は系に依存した相対的なものである。つまり、特殊相対性理論では電気と磁気は1つとなり、分けて考えることができない。
磁場と力
磁気現象は磁場によってもたらされる。電流または磁気双極子は磁場を生み出し、その磁場内にある他の粒子に磁力が与えられる。
マクスウェルの方程式(定常電流の場合はビオ・サバールの法則に単純化される)は、そういった力を生み出す場の起源とその振る舞いを説明する。電荷を持つ粒子が運動すると(例えば、電子の運動によって電流が流れる場合や原子核の周りを電子が軌道を描いて回る場合)、磁力が観測される。そして、その源泉は量子力学的スピンから生じる真性磁気双極子である。
荷電粒子が電流として運動したり原子内で運動する、あるいは真性磁気双極子によって磁場が生まれると、磁力も生じる。次の式は運動する荷電粒子についてのものである。
磁場 B の中を運動する荷電粒子は、以下の外積(クロス積)で表される力 F(ローレンツ力)を受ける[15]。
ここで、
この力は外積なので、粒子の速度と磁場の両方に対して垂直な方向に働く。このため仕事はなされず、磁力は粒子の運動の方向だけを変え、速さは変えない。その力の大きさは次の式で表される。
ここで、 は v と B の間の角度である。
移動する荷電粒子と磁場の方向から力のかかる方向を知るにはフレミング右手の法則を応用すればよい。v を人差し指、B を中指で表せば、力 F の方向は親指で表される。
磁気双極子
通常、磁場は双極子場として現れ、S極とN極を持つ。「S極」「N極」という用語は磁石を方位磁石として使っていたことに由来している(方位磁石は地球の磁場すなわち地磁気と相互作用し、地球上での北 (North) と南 (South) を指し示す)。
磁場はエネルギーを蓄える。物理系は普通、エネルギーが最小となる配置で安定となる。そのため、磁気双極子を磁場の中に置くと、磁場と反対の方向に自らの磁極を向けようとし、これによって正味の磁場の強さをできるだけ打ち消して磁場に蓄えられるエネルギーを小さくしようとする。例えば、2つの同じ棒磁石を重ねると普通、互いのN極とS極がくっついて正味の磁場が打ち消されるようになり、同じ方向に重ねようとする力には逆らおうとする。(これが、方位磁石として使われる磁石が地球磁場と作用して北と南を向く理由である。)なお、2つの同じ磁場を持った棒磁石を無理矢理同じ方向に重ねた場合、2つの棒磁石を同じ方向で重ねるために使われたエネルギーは重なった2本の磁石が作る磁場に蓄えられ、その強さは1本の磁石の2倍になる。
磁気単極子
棒磁石が強磁性を持っているのは、棒全体に電子が均一に分布しているからであり、棒を半分に切ってもそれぞれの断片が小さい棒磁石になる。(N極側とS極側で色分けがなされたデザインの棒磁石も存在するが、仮に色が分けられている場所で切断したとしても、それぞれの色の2本の棒磁石ができるだけである。)いずれにしても磁石にはN極とS極ができてしまい、磁石を切断してもN極とS極を分離することはできない。もしも磁気単極子というものが実在するならば、全く新たな磁気効果を生じるだろう。それはN極またはS極がもう一方と対ではなく単独で存在するものを指す。1931年以降2010年現在まで磁気単極子の体系的な探索が行われてきたが、未だに発見されておらず、実在しないと見られている[16]。
以上のような通常の経験に反して、いくつかの理論物理学のモデルでは磁気単極子(モノポール)の存在を予言している。1931年にポール・ディラックは、電気と磁気にはある種の対称性があるため、量子論によって単独の正あるいは負の電荷の存在が予言されるのと同様に、孤立したS極あるいはN極の磁極も存在するはずだ、と述べた。しかし実際には、荷電粒子は陽子と電子のように個々の電荷として容易に孤立して存在できるが、SとNの磁極はばらばらには現れない。ディラックは量子論を用いて、もしも磁気単極子が存在するならば、なぜ観測される素粒子が電子の電荷の整数倍の電荷しか持たないのか、という理由を説明できることを示した。なお、クォークは分数電荷を持つが、自由粒子としては観測されない。
現代の素粒子論では、電荷の量子化は非可換ゲージ対称性の自発的破れによって実現されるとされている。現在のある種の大統一理論で予言されているモノポールはディラックによって考えられた元々のモノポールとは異なることに注意する必要がある。今日考えられているモノポールはかつての素粒子としてのモノポールとは異なり、ソリトン、すなわち局所的に集まったエネルギーの「束」である。こういったモノポールが仮にも存在するとすれば、宇宙論の観測結果と矛盾することになる。宇宙論の分野でこのモノポール問題を解決する理論として考えられたのが、現在有力とされているインフレーションのアイデアである[17]。
電磁気に関する単位
磁性に関わるSI単位系
| 名称 | 記号 | 次元 | 組立 | 物理量 |
|---|---|---|---|---|
| アンペア(SI基本単位) | A | I | A | Electric current |
| Coulomb | C | TI | A·s | 電荷(電気量) |
| ボルト | V | L2T−3MI−1 | J/C = kg·m2·s−3·A−1 | 電圧・電位 |
| オーム | Ω | L2T−3MI−2 | V/A = kg·m2·s−3·A−2 | Electrical resistance・Impedance・リアクタンス |
| オーム・メートル | Ω·m | L3T−3MI−2 | kg·m3·s−3·A−2 | 電気抵抗率 |
| ワット | W | L2T−3M | V·A = kg·m2·s−3 | 電力・放射束 |
| ファラド | F | L−2T4M−1I2 | C/V = kg−1·m−2·A2·s4 | Capacitance |
| ファラド毎メートル | F/m | L−3T4I2M−1 | kg−1·m−3·A2·s4 | 誘電率 |
| 毎ファラド(ダラフ) | F−1 | L2T−4MI−2 | kg1·m2·A−2·s−4 | エラスタンス |
| ボルト毎メートル | V/m | LT−3MI−1 | kg·m·s−3·A−1 | 電場(電界)の強さ |
| クーロン毎平方メートル | C/m2 | L−2TI | C/m2= m−2·A·s | 電束密度 |
| ジーメンス | S | L−2T3M−1I2 | Ω−1 = kg−1·m−2·s3·A2 | コンダクタンス・アドミタンス・サセプタンス |
| ジーメンス毎メートル | S/m | L−3T3M−1I2 | kg−1·m−3·s3·A2 | 電気伝導率(電気伝導度・導電率) |
| ウェーバ | Wb | L2T−2MI−1 | V·s = kg·m2·s−2·A−1 | Magnetic flux |
| T | T | T−2MI−1 | Wb/m2 = kg·s−2·A−1 | 磁束密度 |
| アンペア回数 | A | I | A | 起磁力 |
| アンペア毎メートル | A/m | L−1I | m−1·A | 磁場(磁界)の強さ |
| アンペア毎ウェーバ | A/Wb | L−2T2M−1I2 | kg−1·m−2·s2·A2 | 磁気抵抗(リラクタンス、英: reluctance) |
| Henry | H | L2T−2MI−2 | Wb/A = V·s/A = kg·m2·s−2·A−2 | インダクタンス・パーミアンス |
| ヘンリー毎メートル | H/m | LT−2MI−2 | kg·m·s−2·A−2 | 透磁率 |
その他の単位
生物と磁性
一部の生物は磁場を知覚でき、これを磁覚 (magnetoception) と呼ぶ。医学的治療に磁場を使う Magnetobiology もある。また、生物が磁場を生み出す現象を biomagnetism と呼ぶ。
関連項目
- Electromagnetism - Electrostatics - Lenz's law
- Magnetic moment - Magnetization - 保磁力
- 磁性体 - 磁石 - 電磁石 - プラスチック磁石 - ネオジム磁石 - 希土類磁石
- 磁鉄鉱 - 磁硫鉄鉱
- 磁気軸受 - センサ - マグネチックスターラー
- マグネター
- 断熱消磁
脚注・出典
- ^ Fowler, Michael (1997年). "Historical Beginnings of Theories of Electricity and Magnetism". 2008年4月2日閲覧。
- ^ Vowles, Hugh P. (1932). "Early Evolution of Power Engineering". Isis (University of Chicago Press) 17 (2): 412–420 [419–20]. doi:10.1086/346662.
- ^ Li Shu-hua, "Origine de la Boussole 11. Aimant et Boussole," Isis, Vol. 45, No. 2. (Jul., 1954), p.175
- ^ Li Shu-hua, "Origine de la Boussole 11. Aimant et Boussole," Isis, Vol. 45, No. 2. (Jul., 1954), p.176
- ^ Schmidl, Petra G. (1996-1997). "Two Early Arabic Sources On The Magnetic Compass". Journal of Arabic and Islamic Studies 1: 81–132.
- ^ a b A. Einstein: "On the Electrodynamics of Moving Bodies", June 30, 1905.
- ^ Heisenberg, Werner K. (1928). "zur theorie des ferromagnetismus". Zeitschrift für Physik A Hadrons and Nuclei 61 (3-4): 619-636.
- ^ Bloch, Felix (1930). "zur theorie des ferromagnetismus". Zeitschrift für Physik A Hadrons and Nuclei 61 (3-4): 206-219.
- ^ Stoner, Edmund C. (1930). "The magnetic and magneto-thermal properties of ferromagnetics". Philosophical Magazine Series 7 10 (62): 27-48.
- ^ Mott, N. F. (1949). "The Basis of the Electron Theory of Metals, with Special Reference to the Transition Metals". Proceedings of the Physical Society. Section A 62 (7): 416.
- ^ Anderson, P.W. (1959). "New Approach to the Theory of Superexchange Interactions". Physical Review 115 (1): 1.
- ^ B. D. Cullity, C. D. Graham (2008). Introduction to Magnetic Materials (2 ed.). Wiley-IEEE. p. 103. ISBN 0471477419.
- ^ Catherine Westbrook, Carolyn Kaut, Carolyn Kaut-Roth (1998). MRI (Magnetic Resonance Imaging) in practice (2 ed.). Wiley-Blackwell. p. 217. ISBN 0632042052.
- ^ Griffiths, David J. (1998). Introduction to Electrodynamics (3rd ed.). Prentice Hall. ISBN 0-13-805326-X. OCLC 40251748., chapter 12
- ^ Jackson, John David (1999). Classical electrodynamics (3rd ed.). New York: Wiley. ISBN 0-471-30932-X
- ^ Milton, Kimball A. (June 2006). "Theoretical and experimental status of magnetic monopoles". Reports on Progress in Physics 69 (6): 1637–1711. doi:10.1088/0034-4885/69/6/R02. - Milton はいくつかの決定的でない事象に言及し (p.60)、「磁気単極子が存在したという証拠は全く残っていない」と結論している (p.3)。
- ^ Guth, Alan (1997). The Inflationary Universe: The Quest for a New Theory of Cosmic Origins. Perseus. ISBN 0-201-32840-2. OCLC 38941224..
参考文献
- Furlani, Edward P. (2001). Permanent Magnet and Electromechanical Devices: Materials, Analysis and Applications. Academic Press. ISBN 0-12-269951-3. OCLC 162129430.
- Griffiths, David J. (1998). Introduction to Electrodynamics (3rd ed.). Prentice Hall. ISBN 0-13-805326-X. OCLC 40251748.
- Kronmüller, Helmut. (2007). Handbook of Magnetism and Advanced Magnetic Materials, 5 Volume Set. John Wiley & Sons. ISBN 978-0-470-02217-7. OCLC 124165851.
- Tipler, Paul (2004). Physics for Scientists and Engineers: Electricity, Magnetism, Light, and Elementary Modern Physics (5th ed.). W. H. Freeman. ISBN 0-7167-0810-8. OCLC 51095685.
- David K. Cheng (1992). Field and Wave Electromagnetics. Addison-Wesley Publishing Company, Inc.. ISBN 0-201-12819-5.
外部リンク
- Magnetism Experiments
- Electromagnetism - a chapter from an online textbook
- Jacob Bogatin about Magnetism
- Video: The physicist Richard Feynman answers the question, Why do bar magnets attract or repel each other?
- On the Magnet, 1600 ウィリアム・ギルバートの著作のオンライン版。全文検索可能。
This article is taken from the Japanese Wikipedia Magnetism
This article is distributed by cc-by-sa or GFDL license in accordance with the provisions of Wikipedia.
In addition, Tranpedia is simply not responsible for any show is only by translating the writings of foreign licenses that are compatible with CC-BY-SA license information.
0 개의 댓글:
댓글 쓰기